INDIAN SCHOOL MUSCAT

NAME OF THE EXAMINATION	SECOND PERIODIC TEST	CLASS: XII
DATE OF EXAMINATION	29.05.2022	SUBJECT: PHYSICS
TYPE- SET-C	MARKING SCHEME	

			1
C	1	Electric potential	
		Scalar quantity	1
	2	$V = 6 \frac{kq}{r}$	1/2
		$= 6 \times 9 \times \frac{10^{9} \times 8 \times 10^{-6}}{0.1}$	1/2
	512		1
		$= 432 \times 10^{4} \text{ V}$	
	3	Yes, Inside a uniformly charged spherical shell electric field is zero but	1+1
		electric potential cannot zero. OR	
		Between the line joining two similar charges of equal magnitude.	
	4	Gauss's theorem of electrostatics statement	1
	1	Expression for the electric field due to a straight uniformly charged	1
		infinite line of charge density λ C/m.	
		Introduction and diagram Derivation	1
			1
	5	(i) $V = \frac{k q}{r} = \frac{9 \times 10^{9} \times 24 \times 10^{-6}}{0.2} = 1.08 \times 10^{6} \text{ V}$	1/2 +1/2
			1
		(ii) $V = 1.08 \times 10^6 \text{ V}$	
	6	(i) Definition of equipotential surface	1
		(ii) Plane perpendicular and passing through the mid-point of	1
		the electric dipole	1
		(iii) Opposite to the direction of the dipole moment and	1
		perpendicular to the equipotential surface.	
		Note- Give full credit for diagram representation	
	7	(1) (d) E_0^{-1}	1
		(2) (a) $0.1 N m^2 C^{-1}$	1
		$(3) (c) \frac{q}{6\epsilon_0}$	1
		(4) c) Scalar quantity	1
		1	1
		(5) (b) zero	
	1	\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \	1